cover
Contact Name
Sandri Erfani, S.Si, M.Eng.
Contact Email
sandri.erfani@eng.unila.ac.id
Phone
+6282350155362
Journal Mail Official
jge.tgu@eng.unila.ac.id
Editorial Address
Geophysical Engineering Department Engineering Faculty Universitas Lampung, Prof. Dr. Sumantri Brojonegoro Street No 1, Rajabasa District, Bandar Lampung, Indonesia 35145
Location
Kota bandar lampung,
Lampung
INDONESIA
JGE (Jurnal Geofisika Eksplorasi)
Published by Universitas Lampung
ISSN : 23561599     EISSN : 26856182     DOI : https://doi.org/10.23960/jge
Core Subject : Science,
Jurnal Geofisika Eksplorasi adalah jurnal yang diterbitkan oleh Jurusan Teknik Geofisika Fakultas Teknik Universitas Lampung. Jurnal ini diperuntukkan sebagai sarana untuk publikasi hasil penelitian, artikel review dari peneliti-peneliti di bidang Geofisika secara luas mulai dari topik-topik teoritik dan fundamental sampai dengan topik-topik terapandi berbagai bidang. Jurnal ini terbit tiga kali dalam setahun (Maret, Juli dan November), Volume pertama terbit pada tahun 2013 dengan nama Jurnal Geofisika Eksplorasi (JGE).
Articles 10 Documents
Search results for , issue "Vol 4, No 1 (2018)" : 10 Documents clear
KARAKTERISASI RESERVOAR MELALUI ANALISIS PETROFISIKA BERDASARKAN DATA LOG SUMUR “TRD” FORMASI AIR BENAKAT Beny Chasandra; Ordas Dewanto; Ni Putu Juniari
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.7

Abstract

The research area was located in South Sumatra Basin on Air Benakat Formation at South-East Jambi Province. The research conducted to know productive the interest zone by petrophysics analysis (volume shale water saturation, and porosity) and its characteristics by well-log. The lithology of TRD Well is sandstone with a few foraminifera. The interpretation based on the petrophysical analysis porosity of the 7th zone on TRD-10 is average 12,4%, saturation water 19,4% and volume shale 6,2%; the 7th zone on TRD-11 well is average porosity 16,2%, saturation water 41,3%, and volume shale 22%; the 11th zone on TRD-14 well is average porosity 33,2%, saturation water 21,2% and volume shale 1,2%; The 6th zone TRD-15 well, porosity 7,02%, saturation water 32,3% and volume shale 5,6%; On the TRD-17 well of the 7th zone is average the porosity 9,04%, saturation water 25,6% and volume shale 4,6%; and 4th zone of TRD-19 well, porosity 23,2% Saturation water 13,5% and volume shale 7,1%. The characteristics of hydrocarbon reservoir on TRD Wells have low water saturation is less than 50%, porosity more than 5% and volume shale less than 25%. From the result of petrophysics parameter value used as the indicator of the productive zone and interpreted that sand reservoir on well TRD has potentially for the reservoir zone with gas prospect.
PRE STACK DEPTH MIGRATION UNTUK KOREKSI EFEK PULL UP DENGAN MENGGUNAKAN METODE HORIZON BASED DEPTH TOMOGRAPHY PADA LAPANGAN ‘A1 DAN A2’ Attikah Azzahra; Bagus Sapto Mulyatno; Bambang Mujihardi
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.6

Abstract

In the case of seismic data processing with sandstone lithology such as shale and carbonate often get the result of data processing which have pull up effect especially on the time domain migration result. Pre stack depth migration is a processing based on focusing the amplitude according to the actual depth by using the input interval velocity. Migration is performed using kirchhoff pre stack depth migration algorithm. Pre stack depth migration is done with modeling of horizontal based depth tomography method. This method uses residual moveout correction applied along the horizon-picking line. This research uses two field data that is A1 and A2 Field. A1field has characteristics of carbonate rock that produce pull up shaped similar to carbonate layer. A2 field has a pull-up effect that is not very clear but has build up because of the layer above it. Stages performed starting from the processing of pre stack time migration in the form of velocity picking, generate rms velocity and migration time domain. The pre stack depth migration process begins with a velocity transformation with the dix transformation equation to generate interval velocity, migrate Pre stack depth migration, perform horizon interpretations and perform velocity modeling using the horizon based depth tomography method. The iteration is done 4 times and resulted in the final section of pre stack depth migration which has been corrected by pull up effect.
IDENTIFIKASI DAN ESTIMASI SUMBER DAYA BATUBARA MENGGUNAKAN METODE POLIGON BERDASARKAN INTEPRETASI DATA LOGGING PADA LAPANGAN ”ADA”, SUMATERA SELATAN Deddi Adrian; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.8

Abstract

As petroleum reserves depleted, certainly encourage the government to search for new energy sources. Eksploration of coal is the right choice because  its potential is so great in Indonesian especially in South Sumatera Province is known have content 37,80% from total resources in Indonesian. Well loggging method is one of geophysics method used to find and estimate coal resources. Advantages of well logging method is able to describe subsurface laterally. The purpose of this study is displaying an overview of subsurface rock layers, determine the direction of distribution by correlating coal seam between wells based on data logging, and to estimate coal resources in the research area. The total area of the author's research is 442.056 m2 has 10 wells. Log data used in this study is gamma ray log dan density log, where coal seams are characterized by gamma ray log response and low log density responses. On the field ”ADA” found four coal seam, that is seam A1 with thickness 8,28 m, seam A2 with thickness 13,62 m, seam B with thickness 18,50, and seam C with thickness 8,84. Direction of coal distribution from South to North with slope angle 5-30º and direction of sincerity from East to West. The author calculates the estimated coal resource using polygon method because this calculates method can be done with a short time and the results are right. Total coal by polygon method of 18.322.653 m3 in tons of 21.987.184–27.483.980 ton while calculations with software rock works 15 amount 18.786.254 m3 in tons of 22.543.505–28.179.381 ton.
PENGHILANGAN SWELL NOISE DAN LINIER NOISE PADA DATA SEISMIK 2D MARINE HIGH RESOLUTION PADA LINTASAN “AF” MENGGUNAKAN METODE SWNA, F-K FILTER DAN TAU-P TRANSFORM Achmad Subari; Syamsurijal Rasimeng; Nando Liven Konstanta
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.3

Abstract

Research have been done about noise removal caused by environment (swell noise) and linear noise on high frequency 2D seismic data on line “AF” using swell noise attenuation (SWNA) method, f-k filter and tau-p transformation. Based on obtained result, swell noise succeed removed from data using velocity limited filter that is 1000 m/s on frequency 25 Hz applied to swell noise attenuation process. Applied SWNA data, then created input f-k filter process. In f-k filter process, used polygon design having a minimum frequency limit around 5 Hz maximum high frequency around 450 Hz. The results f-k filter giving a good output with linear noise removal to time 1500 ms. F-k filter output obtained, then processed again using tau-p transformation method. Application of tau-p transformation transformed data into (τ-p) domain. Transformed data on (τ-p) domain, linear noise made on moveout 600 ms. Then the data muted using surgical mute. Based on obtained result, tau-p result can removing linear noise on data. Linear noise removed dominating on time 1500 ms-2500 ms. That matter caused by linear noise on time 0-1500 ms succeed removed using previous process. After the method succesfully applied , data processing continued doing the stack and migration process. Applied migration is postack kirchoff time migration, migration do with migration angel around 300 and aperture around 600 m.
PEMANTAUAN PROSES INJEKSI AIR PADA LAPANGAN “SMR” CEKUNGAN SUMATERA TENGAH BERDASARKAN DATA ANOMALI TIME-LAPSE MICROGRAVITY Ahmad Zaenudin; Dian Pratiwi; Agung Wiyono
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.10

Abstract

There had been done a regional research about monitoring of injection process in "SMR" field of Central Sumatera Basin using microgravity method. The time-lapse microgravity method is the development of the gravity method (x, y, z) by adding the fourth dimension of time (t). Monitoring is carried out on production fields that have performed EOR (Enchanced Oil Recovery) ie the process of injecting water into the reservoir to push and drain the remnants of oil in the pores of the reservoir rock to the production well. The microgravity data processing is done by finding the difference between observed gravity values between the first and the second measurements, then performing the spectral analysis to separate the anomaly at reservoir depth and noise. The time-lapse microgravity anomaly has a value of -132.28 μGal to 54.89 μGal. Positive anomalies are related to the injection process, whereas the negative anomalies are related to the production process in the study area. Filtering analysis shows that there are two zones of fluid dynamics, which is due to the process of surface water dynamics (groundwater above reservoir) and that occurs in the reservoir. Fluid reduction zones occur in areas with more production wells than injection wells. Density reduction occurs in the reservoir layer at a depth of 600 m to 1000 m with a maximum reduction value of -3.1x10-3 gr / cm3. The gravity time-lapse inversion model shows the existence of several injection wells that are less effective and therefore need to be stopped injecting.
IDENTIFIKASI BAWAH PERMUKAAN LAPANGAN MINYAK“HUF” SUMATERA SELATAN UNTUK MENDELINIASI STRUKTUR CEKUNGAN HIDROKARBON BERDASARKAN DATA GAYABERAT Ade Setiawan; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.4

Abstract

Oil field research in regional Banyuasin “HUF” , South Sumatra have been done by the gravity data with objective of knowing fault structure based on analysis of hydrocarbon SVD and knows hollow structure  based on the 3D model of the Bouguer Anomaly and Residual Anomaly. Study areas had Bouguer Anomaly between 13 mgal up to 33 mgal to the interval 1 mgal, where the value of Bouguer Anomaly high have a range value 26 mgal up to 33 mgal which is in the direction of west. While the low value of Bouguer Anomaly have a range value 13 mgal to 20 mgal that is in the east. To knew the existence of structure fault, filtering Second Vertical Derivative (SVD) on a Bouguer Anomaly, Regional and Residua mapl.Pattern of structure fault indicated the contours of a zero value and between the high and low contours. From the results of the analysis SVD Complete Bouguer Anomaly and SVD Residual Anomaly there were 4 (four) fault, while from SVD Regional Anomaly there are 3 (three) fault. 3D modeling the Residual Anomaly were conducted to prove the existence of the fault SVD analyzed based on the results of the analysis and to know the hydrocarbon basin. Based on the results of the inversion of 3D the Residual Anomaly, basin was found in the depth of 1500 m – 3000 m with a value of the density ranges from 2.24 gram/cc until 2.32 gram/cc which identified as sandstone basin.
PEMETAAN MIKROZONASI DAERAH RAWAN GEMPABUMI MENGGUNAKAN METODE HVSR DAERAH PAINAN SUMATERA BARAT Asri Wulandari; Suharno Suharno; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.5

Abstract

Regional Painan, the distric of Pesisir Selatan, the province of west Sumatera is one of the areas with high risk disaster prone. This study aims attempts to maped the disaster prone area of the Painan region based on the dominant frequency value, Vs30, PGA and amplification and to know the value of ground movement from the area. By using the HVSR method (Horizontal to Vertical Spectra Ratio) expected to assist to zone the regions. Based on the research that has been done, it is known that the Painan area, West Sumatera, have values of dominant frequency between 0.6 to 12.07 Hz. As for the value Vs30 between 73.08 to 1449 m/s and the amplification values between 0.47 to 6.01. The PGA value for Painan region between 0.034 to 0.063 g. Based on the analysis that has been done by correlating the four zoning map, it is known that the area which has a high risk of earthquake disaster that is estimated to coastal areas. This is supported by the dominant low frequency value and the value Vs30 small and PGA of high value. The amplification value of this region is divided into four zones, areas that have amplification is very high being around the beach and composed by rock alluvial, the value of amplification of high contained in nearly all the regions Painan while amplification medium and low are the small area of Painan and the small area of Bungo Pasang Salido because based on the geological map of the area is composed of two types of rocks are alluvial and rock Painan Formations.
RELOKASI HIPOSENTER GEMPABUMI MENGGUNAKAN METODE MODIFIED JOINT HYPOCENTER DETERMINATION (MJHD) UNTUK ANALISIS ZONA SUBDUKSI SUMATERA BAGIAN SELATAN Deswita Sari; Fadiah Khairina; Gatut Daniarsyad
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.9

Abstract

The part of south Sumatera is very vulnerable region in case of earthquake disaster caused by convergent boundary of two tectonic plates Indo-Australian Plates and Eurasian Plates. Precise hypocenter analysis is needed to understand about  the accurate tectonic setting such as subduction zone in the area. Hypocenter relocation is used to recalculate earthquake hypocenter to become more accurate. To produce a more accurate hyposenter this hyposenter relocation is done by using the method of Modified Joint Hypocenter Determination (MJHD). Relocation using the Modified Joint Hypocenter Determination (MJHD) method uses IASP91 wave velocity which assumes that the inner structures are heterogeneous. In this study, used data P-wave and S-wave  arrival time in the period January 2010 s.d December 2016 with coordinates -3.5º s.d -9º LS - 99º s.d 106.5º BT. The results of the relocation using MJHD showed a change of earthquake hypocenter shown by RMS (Root Mean Square) value ranging from 0.2 s.d 0.5. There are three subduction of the part in south sumatra. The subduction zone formed in Bengkulu is about 26.78º, the subduction zone of Lampung is around 30.225º and the subduction of the Sunda Strait is about 52.53º. Subduction zone of Bengkulu at depth of 250 km, Lampung and Sunda Strait at depth 400 km.
Introduction and Table of Content JGE Vol 4 No 1 March 2018 Editor JGE
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.45

Abstract

xxx
Front Cover JGE Vol 4 No 1 2018 Editor JGE
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.46

Abstract

xxx

Page 1 of 1 | Total Record : 10